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The theorems of Erdo� s and Tura� n mentioned in the title are concerned with the
distribution of zeros of a monic polynomial with known uniform norm along the
unit interval or the unit disk. Recently, Blatt and Grothmann (Const. Approx. 7
(1991), 19�47), Grothmann (``Interpolation Points and Zeros of Polynomials in
Approximation Theory,'' Habilitationsschrift, Katholische Universita� t Eichsta� tt,
1992), and Andrievskii and Blatt (J. Approx. Theory 88 (1977), 109�134) established
corresponding results for polynomials, considered on a system of sufficiently
smooth Jordan curves and arcs or piecewise smooth curves and arcs. We extend
some of these results to polynomials with known uniform norm along an arbitrary
quasiconformal curve or arc. As applications, estimates for the distribution of the
zeros of best uniform approximants, values of orthogonal polynomials, and zeros of
Bieberbach polynomials and their derivatives are obtained. We also give a negative
answer to one conjecture of Eiermann and Stahl (``Zeros of orthogonal polynomials
on regular N-gons,'' in Lecture Notes in Math. 1574 (1994), 187�189). � 1999
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1. INTRODUCTION

Erdo� s and Tura� n [15, 16] established some quantitative results on the
distribution of the zeros of a monic polynomial, for which an upper bound
for the uniform norm either along the interval [&1, 1] or the closed unit
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disk D� :=[z: |z|�1] is known. The estimates obtained in [15, 16] have
been improved and generalized by many other authors (for a survey, see
[8, 10, 11�13, 18, 29, 30]). We will restrict our attention to the considera-
tion of a monic polynomial on a compact set E of the complex plane C
(instead of [&1, 1] or D� ). A survey of the most recent results in this direc-
tion can be found in [10] (where �E is a system of sufficiently smooth
curves and arcs), [18] (�E consists of a finite number of analytic arcs), and
[8] (�E consists of a finite number of Dini-smooth arcs).

The main purpose of this paper is to prove the same assertions for a
monic polynomial with known uniform norm on a quasiconformal curve or
arc [2, 22].

2. MAIN DEFINITIONS AND RESULTS

Let F be an arbitrary bounded continuum (not a single point) in the
complex plane C with simply connected complement 0 :=C� "F, where
C� :=C _ [�], and let L :=�0=�F be their common boundary.

Let 8 denote the Riemann function that conformally and univalently
maps 0 onto the exterior 2 :=C� "D� of the unit disk D :=[w: |w|<1] and
which is normalized by the conditions

8(�)=�, 8$(�) := lim
z � �

8(z)
z

:=(cap L)&1>0,

where cap F=cap L denotes the logarithmic capacity of F (or L) [31].
Set 9 :=8&1. By +=+F=+L we denote the equilibrium measure (distri-

bution) for F [31].
Throughout what follows L will be a quasiconformal curve or arc [2, 22].

We recall that a Jordan curve or a Jordan arc L is called K-quasiconformal,
K�1, or, briefly, quasiconformal, if there exists a K-quasiconformal mapping
of the plane onto itself which carries L into a circle or a line segment, respec-
tively. Ahlfors (see [2]) has established a geometric criterion for quasicon-
formality of a curve which can be formulated as follows: A Jordan curve
L is quasiconformal iff for any pair of points z1 and z2 # L the inequality

min[diam L$, diam L"]�c |z1&z2 |

holds with some constant c=c(L)�1, where L$ and L" are the two arcs
which L"[z1 , z2] consists of.

We note that the same description is valid for a quasiconformal arc as
well [28].

Using Ahlfors' criterion, one can easily verify that convex curves, curves
of bounded variation without cusps, and rectifiable Jordan curves which
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have the same order of arc length and chord length are quasiconformal. At
the same time, as Belinskii's example [9, p. 42] shows, each part of a
quasiconformal curve can be nonrectifiable.

A Jordan domain bounded by a quasiconformal curve is also called a
quasidisc.

Let p= pn # Pn , where Pn , n # N :=[1, 2, ...], denotes the set of all
algebraic polynomials of degree n. We associate with p the normalized
counting measure for its zeros, i.e.,

&(A)=&p(A) :=
number of zeros of p in A

n
(A/C),

where the zeros are counted with their multiplicities.
Consider the logarithmic potentials of the measures + and &

U+(z) :=&| log |z&`| d+(`)

={&log |8(z)|&log cap L
&log cap L

if z # 0"[�]
if z # F,

U &(z) :=&| log |z&`| d&(`)=&
1
n

log | p(z)| (z # C),

and their difference

U+&&(z) :=U+(z)&U &(z) (z # C).

Our basic results will be formulated in terms of the quantities

=p :=sup
z # C

U+&&(z)=
1
n

log &p&L&log cap L,

if L is an arc, and

$p :=2=p&U+&&(z0)=
2
n

log &p&L&
1
n

log | p(z0)|&log cap L,

where z0 # int L is an arbitrary fixed point, if L is a curve.
Here and in what follows, the symbol & }&A denotes the supremum norm

over the set A/C and int L denotes the collection of points interior to the
Jordan curve L. In addition, set ext L :=C� "int L.

To start with, let L be a K-quasiconformal curve and let z0 # G :=int L
be a fixed point. Denote by w=.(z) the conformal mapping of G onto D
with the normalization .(z0)=0, .$(z0)>0. Set � :=.&1.
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The functions 8, 9, ., � can be naturally extended to homeomorphisms
between the appropriate closed domains and we keep the previous nota-
tions for these extensions.

Further, for ` # C"[z0] set

`L :={
9 \ 8(`)

|8(`)|+ if ` # 0"[�]

� \ .(`)
|.(`)|+ if ` # G"[z0]

` if ` # L,

L+
r :=[`: |8(`)|=1+r] (r�0),

L&
r :=[`: |.(`)|=1&r] (0�r<1).

Let J be an arbitrary subarc of L. For _>0 and 0<{<1 define

J +
_ :=[` # L+

_ : `L # J],

J &
{ :=[` # L&

{ : `L # J],

E_, { :=(ext L&
{ ) & (int L+

_ ),

A_, {(J) :=[` # E_, { : `L # J].

Consider the function 8 b � (given on the unit circle �D) and its modulus
of continuity

|8 b �(x) := sup

|w&t|�x
|w|=|t|=1,

|(8 b �)(w)&(8 b �)(t)| (x>0).

The functions 8 and � satisfy a Ho� lder condition. The validity of this well-
known fact follows, for example, from Lemma 1 below.

Hence,

|8 b �(x)�Cx: (x>0) (2.1)

with some constants C>0 and 0<:�1.
More precise information about the connection between the geometry of

L and the exponent : in (2.1) can be derived, for example, from [23, 24].
We only state the following remark concerning the case of a piecewise
smooth curve L.
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Following [27], a smooth Jordan curve L is called Dini-smooth if the
angle ;(s) of the tangent, considered as a function of the arc length s,
satisfies

|;(s2)&;(s1)|<h(s2&s1) (s1<s2),

where h(x) is an increasing function for which

|
1

0

h(x)
x

dx<�.

We call a Jordan arc Dini-smooth if it is a subarc of some Dini-smooth
curve.

It is simple to derive from well-known distortion properties of the
conformal mappings 8 and � [27, Chapter 3] that if L consists of a finite
number m of Dini-smooth arcs which meet under the with respect to G
inner angles ;j?, 0<;j<2, j=1, ..., m, then (2.1) is valid with

:=min {
min1� j�m ; j

2&min1� j�m ; j
, 1= . (2.2)

Note that by this formula the value of : is the same (and equal to 1) for
smooth L and for piecewise smooth L with ;j�1, j=1, ..., m.

Theorem 1. Let L be a K-quasiconformal curve and let the function
8 b � satisfy condition (2.1). Let z0 # G :=int L and 0<c0<1 be fixed.
Suppose that p # Pn , n # N, is a monic polynomial such that $p<1�2. Then
there exists a constant c>0 depending only on K, :, C, z0 , c0 such that

|(+L&&p)(A_, {(J))|�c $:�(1+:)
p (2.3)

for all subarcs J of L and all _ and { with the property

_�_n=_n( p, z0 , c0 , :) :=c0 $:�(1+:)
p ,

1>{�{n={n( p, z0 , c0 , :) :=_1�:
n .

If F is an arc, an analogue to Theorem 1 holds as well. Namely, let F=L
be a K-quasiconformal arc. Denote by z1 and z2 the endpoints of L. Since
the function 8 can be extended continuously to these points, we set for
r>0 and j=1, 2,

tj :=8(zj), 21 :=[t: |t|>1, arg t1<arg t<arg t2],

22 :=2"2� 1 , 0 j :=9(2j), Jj :=2� j & D� ,

Lr :=[` # 0: |8(`)|=1+r].
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A routine category argument shows that �21 and �22 are both quasicon-
formal curves. Moreover, the curve �01=�02 is quasiconformal, too (see
[4, Lemma 1]). Therefore, the restriction 8j , j=1, 2, of the function 8 to
the region 0j can be extended to a K1 -quasiconformal mapping of the
extended complex plane C� onto itself, where K1=K1(L)>1 is a suitable
constant (see [2, Chapter IV]).

Using Lemma 1 below, this fact makes it possible to obtain

|81 b 92
(x)+|82 b 91

(x)�Cx: (x>0), (2.4)

where C>0 and 0<:�1 are some constants depending only on L,
9j :=8&1

j and where |81 b 92
as well as |82 b 91

denote the moduli of con-
tinuity of the functions 81 b 92 and 82 b 91 on J2 and J1 , respectively.

For an arbitrary subarc J of L and _>0 set

E_ :=int L_ , A_(J) :=[` # E_ : `L # J],

where we use the notation

`L :=9j \ 8j (`)
|8j (`)|+ (` # 0� j).

Theorem 2. Let L be a quasiconformal arc satisfying condition (2.4) and
let c0>0 be fixed. Suppose that p # Pn , n # N, is a monic polynomial such
that =p�1. Then there exists a constant c>0 depending only on L, :, C, c0

such that

|(+L&&p)(A_(J))|�c=:�(1+:)
p (2.5)

for all subarcs J of L and all _ with

_�_n=_n( p, c0 , :) :=c0=1�(1+:)
p .

Roughly speaking Theorems 1 and 2 are extensions of some results in
[10] to the case of curves and arcs with corners (not cusps). In fact, if
L # C2+ as in the result of Blatt and Grothmann cited above, then :=1
and Theorems 1 and 2 give the same estimates as [10, Theorem 2]. It may
be interesting to note that according to (2.2) condition (2.1) with :=1 is
satisfied for some curves with corners, too.

The requirement of quasiconformality of the curve or arc imposed in the
theorems above is essential (for details, see [8]).

In what follows we denote by c, c1 , ... positive constants (different each
time, in general) that either are absolute or depend on parameters not
essential for the arguments; sometimes such a dependence will be indicated.
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For positive a and b we use the expression aPb (order inequality) if
a�cb for some c>0. The expression a �� b means that aPb and bPa
simultaneously.

Set

d(A, B) :=dist(A, B) := inf
z # A, ` # B

|z&`| (A, B/C).

3. APPLICATION TO ZEROS OF BEST UNIFORM
APPROXIMANTS

As a direct consequence of Theorems 1 and 2, a quantitative version of
a result from [12] for the zeros of the polynomials of best uniform
approximation to functions on compact sets in C can be obtained.

Theorem 3. Let F be a closed quasidisc or a quasiconformal arc satisfy-
ing condition (2.1) or (2.4), respectively. Assume that the function f is analytic
in the interior of F, continuous on F, and not infinitely often differentiable on
the boundary of F. If we denote by pn* the best uniform approximation of f
on F with respect to �n

k=1 Pk , then, for all 0<_0<1, there exist an infinite
sequence 4�N such that, for any subarc J of L :=�F, n # N, _>_0 and
_0<{<1,

|(+L&&pn*
)(A_, {(J))|�c \log n

n +
:�(1+:)

if L is a curve (respectively,

|(+L&&pn*
)(A_(J))|�c \log n

n +
:�(1+:)

in the case of an arc), where the constant c>0 is independent of J, n, and _.

The proof of this theorem is completely analogous to the proof of
[10, Corollary 4] and we shall not dwell on it.

4. APPLICATION TO THE DISTRIBUTION OF VALUES
OF ORTHOGONAL POLYNOMIALS

Let L be an arbitrary quasiconformal curve, and let h be a weight func-
tion on G :=int L, i.e., positive and measurable function on G. Next, let
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Qn(z)=Qn(h, z)=*n zn+ } } } , *n>0, n # N0 :=[0, 1, ...], be a sequence of
polynomials orthogonal on G with respect to the weight function h, that is,

|
G

Qk(z) Ql (z) h(z) dm(z)={1
0

if k=l
if k{l,

where dm(z) is the 2-dimensional Lebesgue measure.
We assume here and throughout that

h(z)�c1(d(z, L))m (z # G) (4.1)

with some constants m>0, c1>0.
For an arbitrary complex number a # C denote by &a

Qn
the measure that

associates the mass 1�n with each of the a-values of the polynomial Qn , that
is, with the roots of the equation

Qn(z)=a.

Theorem 4. Let L, z0 # G :=int L, : and c0 be as in Theorem 1, and let
h satisfy (4.1). Then for each complex number a({0)

|(+L&&a
Qn

)(A_, {(J))|�c \log n
n +

:�(1+:)

(n�2) (4.2)

for all subarcs J of L and all _ and { such that

_�_n :=c0 \log n
n +

:�(1+:)

, 1>{�{n :=_1�:
n ,

where the constant c is independent of J and n.

The exceptional role of the value a=0 in Theorem 4 becomes obvious
if we consider the system

{\n+1
? +

1�2

zn=n # N0

of polynomials orthogonal on the unit disk D with respect to the weight
function h(z)#1.

The example constructed below shows also that the restriction (4.1) in
Theorem 4, in general, cannot be omitted.

In fact, let G :=D,

h(z)=h( |z| ) :=exp {&exp { 1
1&|z|== (z # D).
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It is easy to see that the function h does not satisfy (4.1) and Qn(z)=*n zn,
where

*&2
n =2? |

1

0
h(r) r2n+1 dr.

Setting (for sufficiently large n) rn :=1&1�(log n), we have

(2?*2
n)&1�r2n+1

n +exp {&exp { 1
1&rn==�exp {&c1

n
log n= .

It means that the roots z1 , ..., zn of the equation Qn(z)=1 satisfy

|zj |=*&1�n
n �1&

c2

log n
( j=1, ..., n).

Thus, in this case the conclusion of Theorem 4 is violated.
It is interesting to compare the statement of Theorem 4 with Picard's

theorem which asserts that an analytic function assumes in an arbitrary
neighborhood of its essential singularity all finite complex values with at
most one possible exception.

It turnes out that imposing supplementary restrictions on the geometry
of L we can derive also some information about the zeros of Qn .

Theorem 5. Let L, G, z0 , : and c0 be as in Theorem 1, and suppose that
for some k # N the conformal mapping . satisfies the condition

&.(k)&G=�. (4.3)

Then there exist an infinite sequence 4�N and a positive constant c depen-
ding only on z0 , c0 and L such that if n # 4, then the counting measure &Q� n

for the zeros of the orthogonal polynomial Q� n(z)=Qn(h, z), where h(z)#1,
satisfies the inequality

|(+L&&Q� n
)(A_, {(J))|�c \log n

n +
:�(1+:)

for any subarc J of L and all _ and { with the properties

_�_n :=c0 \log n
n +

:�(1+:)

, 1>{�{n :=_1�:
n .
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Eiermann and Stahl [14] considered convex domains having a poly-
gonial boundary, especially N-gons GN , N=3, 4, ..., which have their vertices
at the Nth roots of unity. They conjectured that

,
�

m=1

.
n>m

Zn & �G=[z1 , ..., zN], (4.5)

where Zn , n # N, denote the sets of zeros of Q� n and z1 , ..., zN are the vertices
of �G=�GN . That is, only the vertices of G attract zeros of Q� n (as n � �).

This conjecture is false for N�5. Indeed, in the neighborhood of zj ,
j=1, ..., N, the conformal mapping . has the representation

.(z)=hj ((z&zj)
N�(N&2)),

where the hj are analytic in a disk around the origin with sufficiently small
radius. Therefore, for N�5, ." has a singularity at zj and by Theorem 5

,
�

m=1

.
n>m

Zn#�G,

which contradicts (4.5).

5. APPLICATION TO ZEROS OF BIEBERBACH POLYNOMIALS

As before, let G be a quasidisk and let z0 # G be an arbitrary fixed point.
Denote by f0 the conformal mapping of G onto a disk [w: |w|<r0] with

f0(z0)=0, f $0(z0)=1(r0=r0(G, z0) is called the conformal radius of G with
respect to z0). It is obvious that f0=r0 ..

It is well known that f0 minimizes the integral

|
G

| f $(z)|2 dm(z) (5.1)

in the class of all functions f analytic in G and normalized by the condi-
tions

f (z0)=0, f $(z0)=1.

The expression (5.1) is minimized in the class

{ f =pn # .
n

k=1

Pk : pn(z0)=0, p$n(z0)=1=

343ERDO� S�TURA� N TYPE THEOREMS



by exactly one polynomial ?n . This polynomial is called the nth Bieberbach
polynomial for the region G.

In [5] it was proved that

lim
n � �

& f0&?n&G� =0. (5.2)

According to Rouche's theorem it means that for n large enough ?n does
not have zeros in G except for z0 .

It was shown in [25] that the distributions of the zeros of ?n and ?$n are
governed by the location of the singularities of the mapping function f0 .

We will be interested in the case where all boundary points of G are
accumulation points of zeros of [?n] or [?$n]. By [25] the boundary
L=�G attracts zeros of ?n and ?$n iff the function f0 cannot be analytically
extended to a neighborhood of G� . This fact explains the sense of the restric-
tion (4.3) imposed in the theorem below.

Theorem 6. Let L, G, z0 , : and c0 be as in Theorem 1, and suppose that
for some k # N the function . satisfies condition (4.3). Then there exist an
infinite sequence 4�N and positive constants c1 , c2 depending only on z0 , c0

and L such that if n # 4, then

|(+L&&?$n
)(A_, {(J))|�c1 \log n

n +
:�(1+:)

, (5.3)

|(+L&&?n
)(0� & A_, {(J))�c2 \log n

n +
:�(1+:)

, (5.4)

for any subarc J of L and all _ and { with the properties

_�_n :=c0 \log n
n +

:�(1+:)

, 1>{�{n :=_1�:
n .

6. SOME AUXILIARY FACTS FROM THE THEORY
OF QUASICONFORMAL MAPPINGS

If G is an arbitrary K-quasidisk, it is known (see [2, Chapter IV]) that
the conformal mappings 9 and . can be extended to K1-quasiconformal
homeomorphisms (K1=K1(K, z0)�1) of the extended complex plane onto
itself with � as fixed point. We keep the previous notations for these
extensions. Note that the inverse functions 9 :=8&1 and � :=.&1 will be
K1 -quasiconformal mappings, too.
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The following result (see [3, Lemma 1]) is useful in the study of the
metric properties of the mappings 8, 9, ., �.

Lemma 1. Let w=F(`) be a K-quasiconformal mapping of the plane
onto itself, with F(�)=�, `j # C, wj :=F(`j), j=1, 2, 3, and |w1&w2 |�
c1 |w1&w3 |. Then |`1&`2 |�c2 |`1&`3 | and, in addition,

} `1&`3

`1&`2 }�c3 }w1&w3

w1&w2 }
K

,

where ci=ci (c1 , K), i=2, 3.

Let E be a bounded Jordan domain and let J be a subarc of �E.
Denote by 1=1(E, J, z) the family of all locally rectifiable cross-cuts

#/E of E separating in E the point z # E from J.
For the harmonic measure |(z, E, J) of J at the point z with respect to

E the following estimate can be derived from [20, pp. 319�320] (see also
[19, p. 6])

|(z, E, J)�c1 exp[&?m(1 )], (6.1)

where m(1 ) is the module of the family 1 [2, 22].
We recall three well-known facts concerning the notion of the module of

a family of curves.
We begin with the comparison principle. Let 1 $ and 1" be two families

of curves and arcs. If every #$ # 1 $ contains a #" # 1" then

m(1 $)�m(1"). (6.2)

Further, the module of the family

10=10(r1 , r2 , %1 , %2) :=[#% :=[rei%: r1<r<r2]: %1<%<%2],

where 0<r1<r2<�, 0<%2&%1�2?, can be calculated exactly, namely,

m(10)=
%2&%1

log(r2 �r1)
. (6.3)

The last property of the module of a family of curves important for our
considerations is its quasi-invariance. It means that for any K-quasiconfor-
mal mapping F of some domain E/C� and any family 1 of arcs and curves
#/E,

K&1m(F(1 ))�m(1 )�Km(F(1 )). (6.4)
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7. CONSTRUCTION AND PROPERTIES OF THE
INTERMEDIATE FUNCTIONS

Let l be an arbitrary subarc of the K-quasiconformal curve L and let :, C
be the constants in (2.1).

Denote by

|(z) :=|(z, E_, { , l +
_ _ l &

{ ),

where _>0, 0<{<1, the harmonic measure of l +
_ _ l &

{ at the point
z # E_, { with respect to E_, { .

Lemma 2. Let z # A_, {(L"l ), 0<_<1, { :=_1�:. Then there exist
constants cj=cj (K, :, C), j=1, 2, such that

|(z)�c1 exp {&c2

d
_= , (7.1)

where d :=d(8(zL), 8(l)) is the distance between 8(zL) and 8(l).

Proof. A glance at the function estimated shows that we may suppose
without loss of generality that d�c3_, where the sufficiently large constant
c3>1 will be chosen later.

Let `1 and `2 be the endpoints of the arc l. Consider the quadrilateral
Q :=A_, {(L"l ) whose sides are the arcs

#j :=[` # E_, { : `L=`j] ( j=1, 2),

#3 :=(L"l )&
{ , #4=(L"l )+

_ .

By the maximum principle,

|(z)� :
2

j=1

|(z, Q, #j). (7.2)

The arc

#5 :=[` # E_, { : `L=zL]

divides Q into two new quadrilaterals Q1 and Q2 . For definiteness we
assume that

#2 /�Qj ( j=1, 2).
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Denote by 1j , j=1, 2, the family of all locally rectifiable arcs #/Qj

separating in Qj the sides #j and #5 , i.e., arcs with one endpoint on #3 and
the other one on #4 .

Applying (6.1) and the comparison principle for moduli of families of
curves (6.2), we find that

|(z, Q, #j)Pexp[&?m(1j)] ( j=1, 2). (7.3)

Thus, the problem of a suitable estimation of the quantity m(1j) from
below has to be our next target.

We begin with the inequality

m(1j)�K &1
1 m(1 $j), (7.4)

where 1 $j :=8(1j), which follows from the relation (6.4).
Now, set

s :=8(L"l )=[ei%: %1<%<%2],

sk :=8(#k) (k=1, ..., 5),

t j :=s� 3 & s� j , wj :=s� & s� j ( j=1, 2, 5).

Lemma 1 applied to the quasiconformal mapping 8 b � implies that for
j=1, 2, 5,

diam(sj & D)�c4 |wj&t j |�c5(1&|t j | ).

Furthermore, for any t # s3 ,

1&|t|�c6_.

Indeed, consider the point ` :=(. b 9 )(t) and the arc # :=(. b 9 )(s). Since
by our assumption diam s�_ we have

length #�c7_1�:.

We select the points !1 and !2 # # so that

arg !1=arg `, |!1&!2 |=
1

2c7

_1�:.
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It is important to recall that the mapping . b 9 is quasiconformal, since
this implies via Lemma 1 that for {j :=(8 b �)(!j), j=1, 2, we have

1&|t|� |t&{1 |�c8 |{1&{2 |�c9 |!1&!2 |:=c6_.

Consider the family of arcs

1 j" :=[#% :=[re i%: 1&c6_<r<1+_]: %1+c10 _�%�%2&c10_],

where c10 :=(?�2) c5c6 . It should be noted that 1j" will be defined correctly
if we chose c3>2c10 .

Moreover, if c3>3c10 , then according to (6.3) and the comparison
principle (6.2), we get

m(1 $j)�m(1 j")=
%2&%1&2c10_

log
1+_

1&c6_

�c11

d
_

. (7.5)

Hence, in virtue of (7.2)�(7.5), (7.1) is satisfied. K

Corollary. Writing the assertion of Lemma 2 for the arc L"l instead
of l, we obtain the following inequality

1&|(z)�c1 exp{&
c2

_
d(8(z), 8(L"l ))= (z # A_, _ 1�: (l )).

Now, for w # C"�D, 0<_<1 and { :=_1�: set

|[9(w)] if 1<|w|�1+_
|~ (w) :={|[�(w)] if 1&{�|w|<1

0 if |w|>1+_ or |w|<1&{.

We average this function in D and 2 separately in the following way. Let
K(z), z # C, be an arbitrary averaging kernel, i.e., K(z) has in C partial
derivatives of all orders,

K(z)=K( |z| )�0 (z # C),

K(z)=0 ( |z|�1),

|
C

K(z) dm(z)=1.
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Consider the function

g~ (w) :={
16
_2 |

C

|~ (t) K \4(t&w)
_ + dm(t) if 1+

1
2

_�|w|�1+
3
2

_

16
{2 |

C

|~ (t) K \4(t&w)
{ + dm(t) if 1&

3
2

{�|w|�1&
1
2

{

|~ (w) elsewhere in C"�D.

Note that the function g~ has in C"�D partial derivatives of all orders and
satisfies the inequalities

0�g~ (w)�1 (w # C"�D), (7.6)

|2g~ (w)| P{_&2

{&2

if |w|>1
if |w|<1.

(7.7)

Therefore, the function

g~ [8(z)] if z # ext L
g(z) :={g~ [.(z)] if z # int L

|(z) if z # L

has in C partial derivatives of all orders.
Moreover, by the Green formula

|
C

2g(z) dm(z)=0. (7.8)

Next, applying the technique of [10], we can establish the inequality

}| g(d&&d+)}P$p

{
. (7.9)

Indeed, setting

U� +&&(w) :={U +&&[9(w)]
U+&&[�(w)]

if |w|>1
if |w|<1

and using the representation of the function g by the Green formula

g(z)=
1

2? |
C

2g(`) log |z&`| dm(`) (z # C),
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we obtain according to (7.7) and (7.8)

}| g(d&&d+)}= 1
2? }|C

U +&&(`) 2g(`) dm(`)}
=

1
2? }|C

(=p&U +&&(`)) 2g(`) dm(`)}
�

1
2? |

2 _ D
(=p&U� +&&(w)) |2g~ (w)| dm(w)

P_&2 |
1+2_

1+_�2
r

1
2? |

2?

0
(=p&U� +&&(rei%)) d% dr

+{&2 |
1&{�2

1&2{
r

1
2? |

2?

0
(=p&U� +&&(rei%)) d% dr

P
=p

_
+

=p&U� +&&(0)
{

P
$p

{
.

Further, set _1 :=_�2, {1 :={�2. By the Green formula we have for z # L

g(z)=
1

2? |
L +

_1
_ L&

{1
\|(`)

�
�n

log |`&z|&
�

�n
|(`) log |`&z|+ |d`|.

Integrating the last relation we get

| g d+=&
1

2? |
L+

_1
_ L&

{1
\|(`)

�
�n

U+(`)&
�

�n
|(`) U+(`)+ |d`|

=
1

2? |
L+

_1
\|(`)

�
�n

log |8(`)|&
�
�n

|(`) log |8(`)|+ |d!|. (7.10)

For w # 2, set U� +(w) :=U+(9(w)). Next, we analize the integrals on the
right-hand side of (7.10). Note that

1
2? |

L+
_1
\|(`)

�
�n

log |8(`)|+ |d`|

=
1

2? |
|w|=1+_1

|~ (w)
|w|

|dw|

=+(l )+
1

2?(1+_1) ||w|=1+_1

(|~ (w)&/(w)) |dw|,
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where

/(w) :={1

0

if
w

1+_1

# 8(l)

elsewhere in C.

Since by Lemma 2 and its Corollary

1
2?(1+_1) ||w| =1+_1

(|~ (w)&/(w)) |dw| P|
2?

0
e&c1x�_ dxP_,

we have

} 1
2? |

L+
_1

|(`)
�

�n
log |8(`)| |d`|&+(l )}P_. (7.11)

The same reasoning can be applied to the second integral. We only need
to add the following simple consequence of Schwarz's formula: For w with
|w|=1+_1 ,

|grad |~ (w)|�
1
? |

|{&w|=_1

||~ ({)&|~ (w)|
|{&w|2 |d{|

P
1
_

exp {&c2

d(w�(1+_1), [w1 , w2])
_ = ,

where w1 and w2 are the endpoints of 8(l ), and therefore

}||w|=1+_1

�
�n

|~ (w) |dw| }P1
_ |

2?

0
e&c2x�_ dxP1.

Hence

} 1
2? |

L+
_1

�
�n

|(`) log |8(`)| |d!| }
=

1
2?

log(1+_1) }| |w|=1+_1

�
�n

|~ (w) |dw| }P_. (7.12)

Combining (7.10)�(7.12) we get

}| g d+&+(l ) }P_. (7.13)
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Apart from this we have in view of (7.9) and (7.13)

}| g d&&+(l )}P\_+
$p

{ + . (7.14)

8. PROOF OF THEOREM 1

Without loss of generality we may assume that $p and, consequently, _n

are sufficiently small.
By virtue of [10, Remarks 1 and 2], we have

&(ext L+
t )�

=p

log(1+t)
(t>0),

&(int L&
t )�

=p+U &&+(z0)
log(1�(1&t))

(0<t<1).

Therefore, for 0<_<1�2 and 0<{<1�2,

|(+&&)(E_, {)|=&(C"E_, {)P\=p

_
&

=p+U &&+(z0)
{ + . (8.1)

A routine category argument shows that in order to prove inequality (2.3),
it is sufficient to estimate the quantity (&&+)(A_, {(J)) only for _=_n and
{={n .

Now, for t>0 set

# :=8(J)=[ei%: %1�%�%2],

#t :=[ei%: %1&t_n�%�%2+t_n],

Jt :=9(#t).

First, we consider the case +(J)�_n . Let M be a sufficiently large constant
to be chosen later. For l :=JM and _ :=2_n , let g be the function constructed
in the previous section.

By the Corollary to Lemma 2 we can choose M such that

g(z)=|(z)� 1
2 (z # A_n , {n

(J)).

Therefore, by (7.14)

1
2 &(A_n , {n

(J))�| g d&P_n . (8.2)
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Now, let _n<+(J)=: a. Without loss of generality we assume that

#=8(J)=[ei%: &a?�%�a?].

For l :=J and _ :=_n consider the function g from above. By virtue of
(7.14) we obtain

| g d&�a&c1_n . (8.3)

To estimate the left-hand term in (8.3) we construct the following division
of the circular arc[ |w|=1]"#.

We distinguish two cases.

If 1&a�_n , then

11 :=[ei% : a?�%�?].

If 1&a>_n , then

1k :=[ei%: (a+k_n) ?�%�(a+(k+1) _n) ?]

\k=0, ..., k0 :=_1&a
_n &&1+ ,

1k0+1 :=[ei%: (a+(k0+1) _n) ?�%�?].

In both cases let

1&k :=[ei%: e&i% # 1k],

1 $\k :=9(1\k).

Since by (8.2),

&(A_n , {n
(1 $\k))P_n ,

we have owing to Lemma 2, its Corollary, (7.6) and (8.1)

| g d&�&(C"E_n , {n
)+&(A_n , {n

(J))

+c2 :
k0

k=0

e&c3k[&(A_n , {n
(1 $k+1))+&(A_n , {n

(1 $&(k+1)))]

�&(A_n , {n
(J))+c4_n .
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Comparing the last inequality with (8.3), we have for any subarc J/L

(&&+)(A_n , {n
(J))� &c5 _n . (8.4)

In order to get the upper estimate of (&&+)(A_n , {n
(J)) we need, due to the

relation

(&&+)(A_n , {n
(J))=&(&&+)(A_n , {n

(L"J))&&(C"E_n , {n
)

+&((A_n , {n
(J) & A_n , {n

(L"J)),

merely to apply (8.2) and (8.4) to the arc L"J.

9. PROOF OF THEOREM 2

Notice that the proof of Theorem 2 follows the same ideas as the proof
of Theorem 1. We give only a sketch of the reasoning to show how the
scheme has to be modified in order to obtain the result.

Let z1 and z2 be the endpoints of the quasiconformal arc L. Let l be a
subarc of L. Consider the set

l_ :=[` # L_ : `L # L] (_>0)

and the function

|(z) :=|(z, E_ , l_) (_>0),

that is, the harmonic measure of l_ at z with respect to E_ .
First, we establish the analogue of Lemma 2.

Lemma 3. Let one of the endpoints of l coincide with z1 . Denote by
z3 # L the other endpoint of l. There exist constants cj=cj (K, :, C), j=1, 2,
such that for z # A_(L"l ) the relation

|(z)�c1 exp {&c2

+(L(z3 , zL))
_: = (9.1)

holds, where C>0, 0<:�1 are the constants from inequality (2.4), and
L(!, `) denotes the subarc of L joining the points ! and ` # L.

Proof. Set S :=L(z3 , zL). We may assume that +(S)�c3_:, where the
constant c3>1 is large enough.
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Divide S by points `0 :=zL , `1 , ..., `k :=z3 into subarcs Si :=L(` i , `i+1),
i=0, ..., k&1, such that

_�2� min
j=1, 2

diam 8 j (Si)�_ (i=1, ..., k&1).

The possibility to perform this procedure for sufficiently large c3 follows
from (2.4).

Moreover, according to (2.4)

max
j=1, 2

diam 8j (Si)P_:.

Therefore

kp+(S) _&:.

We consider the arc

#_(`) :=[! # E_ : !L=`].

Reasoning exactly as in the proof of Theorem 1 we can show that

m([#_(`): ` # Si])p1.

Recalling the composition law [2], we have

m([#_(`): ` # S])� :
k&1

i=0

m([#_(`): ` # S i])pkp
+(S)
_: .

Finally, applying the comparison principle (6.2) and relation (6.1) we
obtain the desired estimate (9.1). K

Observe that the inequality

1&|(z)�c1 exp {&c2

+(L(z3 , zL))
_: = (z # A_(l )) (9.2)

is an immediate consequence of relation (9.1) written for L"l.
If l=L(`1 , `2), `1 , `2 # L, is an arbitrary subarc of L we can express the

function |(z) as a difference of two functions of the shape as in Lemma 3
(corresponding to the arcs L(z1 , `2) and L(z1 , `1)). Therefore, in this case
we can write the appropriate analogues of (9.1) and (9.2) describing the
behaviour of |(z).

355ERDO� S�TURA� N TYPE THEOREMS



Now, consider the following functions

|~ (w) :={|[9(w)]
0

if 1<|w|�1+_
if |w|>1+_,

g~ (w) :={
16
_2 |

C

|~ (t) K \4(t&w)
_ + dm(t)

|~ (w)

if 1+
1
2

_�|w|�1+
3
2

_

elsewhere in 2,

where K(z) is an averaging kernel,

g(z) :={g~ [8(z)]
|(z)

if z # 0
if z # L.

For the function g the analogue of inequality (7.9) takes the form

}| g(d&&d+)}P=p

_
,

and the analogue of inequality (7.13) has the form

}| g d+&+(l )}P_:.

As before, the case of interest is when _=_n is small enough. To see that
(&&+)(A_n

(J)) is appropriately bounded, we have only to repeat practi-
cally word by word the last reasoning in the proof of Theorem 1.

10. PROOF OF THEOREM 4

In order to establish (4.2) we are going to apply Theorem 1 to the monic
polynomial

p(z)= pn(z) :=
Qn(z)&a

*n
. (10.1)

Therefore, the appropriate estimates of the quantity &Qn&G� and the leading
coefficient *n will be the target of our next investigation.

We begin with the following assertion.

Lemma 4. For each point z0 # G,

lim
n � �

Qn(z0)=0. (10.2)
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Proof. As before, let �(w)=�z0
(w) be the conformal mapping of the

unit disk D onto G with �(0)=z0 , �$(0)>0.
The mapping � transforms the polynomial

Kn(z) := :
n

j=0

Q j (z0) Qj (z)

to a function K� n(w) :=Kn[�(w)], and for w # D,

K� n(w) �$(w)= :
�

k=0

akwk,

where a0=Kn(z0) �$(0).
If we take into account that

d(�(w), L)p (1&|w| )2 (w # D),

(see, for example, [7, p. 61]), we get

Kn(z0)= :
n

j=0

|Qj (z0)|2

=|
G

h(z) |Kn(z)|2 dm(z)

p|
D

(1&|w| )2m } :
�

k=0

akw }
2

dm(w)

�2? :
�

k=0

|ak |2 |
1�2

0
(1&r)2m r2k+1 dr

p |a0 |2=(Kn(z0) �$(0))2.

Since

Kn(z0)P[�$(0)]&2P1, (10.3)

it follows that the series

:
�

j=0

|Qj (z0)|2

converges, from which (10.2) immediately follows. K

Further, we recall one auxiliary result which is implicitly given in [1].
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Lemma 5. Let E/C be an arbitrary bounded Jordan domain, J :=�E.
Next, let J +

t , t>0, be the (1+t)-level curve of the conformal mapping
6: C� "E� � 2 with 6(�)=�, 6$(�)>0. Then for each monic polynomial
p(z)= pn(z)=zn+ } } } , n # N, and t>0

|
int Jt

+)"E�
| p(z)|2 dm(z)�2?(cap J)2(n+1) t. (10.4)

Proof. For an arbitrary fixed point z0 # E set

q(z)=qn, z0
(z) :=|

z

z0

p(`) d`,

q~ (w) :=q[6&1(w)] (w # 2),

It :=|
int Jt

+
| p(z)|2 dm(z).

Then by the analytic Green formula, we may write

It=
1
2i |Jt

+
p(z) q(z) dz=

1
2i ||w|=1+t

q~ $(w) q~ (w)| dw.

Using the Laurent series expansion of the function q~ in a neighbourhood
of �, i.e.,

q~ (w)=
cn+1

n+1
wn+1+ :

n

k=0

bkwk+ :
�

k=1

ck

wk ,

where c :=cap J, we find that

It=? \c2(n+1)

n+1
(1+t)2(n+1)+ :

n

k=1

k |bk |2 (1+t)2k& :
�

k=1

k |ck | 2 (1+t)&2k+ .

Hence,

|
(int Jt

+)"E�
| p(z)|2 dm(z)=It&lim

t � 0
It

�?
c2(n+1)

n+1
[(1+t)2(n+1)&1]>2?c2(n+1)t,

which is the assertion in (10.4). K
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Lemma 6. Let L be quasiconformal. Then the double inequality

c1n&1�2�*n(cap L)n�c2 nc (n # N) (10.5)

holds with some positive constants c, c1 , c2 independent of n.

Proof. Let 8n(z)=\&nzn+ } } } , \ :=cap L, be the n th Faber polyno-
mial for the closed domain G� . An argument of [21] shows that

&8n&G� Pn1�2.

At the same time, using the expansion

8n=(\n*n)&1 Qn+dn&1Qn&1+ } } } +d0 Q0 ,

we obtain

|
G

h(z) |8n(z)|2 dm(z)=(\n*n)&2+ :
n&1

k=0

|dk |2�(\n*n)&2,

from which the left-hand side of (10.5) simply follows.
It should be pointed out that we did not use the assumption of quasicon-

formality of L.
In order to establish the right-hand side of (10.5) we set

L&u :=[` # G: |8(`)|=1&u] (0<u�1)

and denote by 8&u the conformal mapping of ext L&u onto 2 normalized
by 8&u(�)=�, 8$&u(�)>0. For ` # L [6, Lemma 3] implies that

c3u�|8&u(`)|&1�c4u, (10.6)

which yields

cap L&u�\�(1+c4 u) cap L&u . (10.7)

We observe that if L is K-quasiconformal, K�1, then L&u is K2-quasicon-
formal. Consequently, the mapping 8&u can be extended to a K4-quasi-
conformal mapping of C� onto itself, a fact that makes it possible to use
Lemma 1.

Hence, for

` # Mu :={` # G: 1�|8&u(`)|�1+
c3

2
u=
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we have

d(`, L)puK4
.

Applying Lemma 5 with u :=1�n, E :=int L&u and t :=c3u�2 we obtain the
following relation:

*&2
n =|

G
h(z) }Qn(z)

*n }
2

dm(z)

pn&mK 4 |
M1�n

}Qn(z)
*n }

2

dm(z)

pn&mK 4&1(cap L&1�n)2(n+1),

which, in view of (10.7), yields the right-hand side of (10.5). K

We note that the construction of the curve L&1�n is closely related to the
possibility of estimating from above the uniform norm of orthogonal poly-
nomials along G� , which is needed for our proof.

In fact, since for each point z # L&1�n and d :=d(z, L)�2,

|Qn(z)| 2�
1

2?d 2 |
|`&z| �d

|Qn(`)| 2 dm(`)

Pd &(m+2) |
|!&z|�d

h(`) |Qn(`)|2 dm(`)�d &(m+2)Pnc,

by the classical Bernstein�Walsh lemma and relation (10.6), we have

&Qn&G� Pnc�2. (10.8)

Finally, an elementary computation for the monic polynomial (10.1) shows
that by virtue of (10.2), (10.5), and (10.8),

$p P
log n

n
(n�2).

Thus, the assertion of Theorem 4 is a direct consequence of Theorem 1.

11. PROOF OF THEOREMS 5 AND 6

We begin with the sequence of orthogonal polynomials Q� n(z) :=Qn(h, z),
n # N0 , for the case of the weight function h(z)#1.
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Set

K(z)=K(z0 , z) := :
�

j=0

Q� j (z0) Q� j (z)

It is well-known [17] that Bieberbach polynomials and their derivatives
can be represented as follows

?n(z)=
1

Kn&1(z0) |
z

z0

Kn&1(`) d`,

?$n(z)=
Kn&1(z)
Kn&1(z0)

,

where

Kn(z) := :
n

j=0

Q� j (z0) Q� j (z).

Lemma 7. Under the assumptions of Theorem 5 and 6 there exists a
sufficiently large constant k>0 such that

lim sup
j � �

|Q� j (z0)| jk>0. (11.1)

Proof. According to (10.8) and the Markov type inequality (see, for
example, [7, p. 187])

&Q� (m)
n &G� �c1n2m &Q� n&G� �c2nc+2m,

where c=c(G), cj=cj (G, m), j=1, 2, are positive constants. Therefore, if
we assume to the contrary that (11.1) is not true, i.e.,

lim sup
j � �

|Q� j (z0)| j k=0

for any k>0, then the function

r0.$(z)= f $0(z)=
K(z)
K(z0)

and all its derivatives possess bounded uniform norm along G. That
contradicts our assumption (4.3). K
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According to Lemma 7 there exist constants c>0, k # N and an infinite
sequence 4�N such that

|Q� n(z0)|�cn&k (n # 4). (11.2)

Hence, for n # 4 and p :=Q� n�*n we obtain according to Lemma 6, (10.8)
and (11.2) that

$p P
log n

n
,

and (4.4) follows directly from Theorem 1.
Further, for n # 4 we write

?$n+1(z)=#nzn+ } } } , #n :=
Qn(z0)
Kn(z0)

*n .

By virtue of (10.2), (10.3), (10.5), and (11.2)

|#n | P*n Pnc(cap L)&n,

|#n | pn&(1�2+k)(cap L)&n.

Now, consider the monic polynomial

p(z)= pn(z) :=
?$n+1(z)

#n
(n # 4). (11.3)

For its uniform norm along G� we have by the already mentioned Markov
type inequality [7, p. 187] and (5.2)

&p&G� Pn2 &?n+1&G� n1�2+k(cap L)nPn3+k(cap L)n.

In addition

p(z0)=
1
#n

pn&c(cap L)n.

Applying Theorem 1 to the polynomial p given by (11.3) we get (5.3).
For the proof of (5.4) we note that &?n&G� P1, |?n(z$0)| p1 for some fixed

point z$0 # G, z$0 {z0 , and the leading coefficient of ?n differs from the
corresponding one of ?$n only by a factor 1�n, which does not effect the
estimates needed for applying Theorem 1. Thus, by the same reasoning as
above, applying Theorem 1 with some fixed point z$0 # G, z$0 {z0 instead of
z0 , we get (5.4).
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12. ONE REMARK

In the formulation of the main Theorems 1 and 2 we have used estimates
from above for the potential U+&&(z) along C. However, in the proof of
these results we needed estimates of U+&&(z) only on some subsets of C,
namely on

ext L+
_n�2 _ int L&

_ n
1�: �2

in Theorem 1 and

ext L_n�2

in Theorem 2.
Moreover, if U+&&(z) is harmonic in C"L, which corresponds to the fact

that all zeros of p belong to L, a lower bound of U+&&(z) can be used in
the proof of the basic inequality (7.9) as well.

We display this approach writing the analogue of Theorem 2 only (for
details, see [8]).

Theorem 7. Let L be a quasiconformal arc satisfying condition (2.4).
Suppose that p is a monic polynomial such that all its zeros belong to L. Then
there exists a constant c>0 depending only on L, :, C such that

|(+L&&p)(J)|�c \=*(_)
_

+_:+ (0<_<1)

for all subarcs J of L, where

=*(_) := & inf
z # L_

U+L&&p (z) (_>0).

If all zeros z1 , ..., zn of a monic polynomial p # Pn , n�2, are at the same
time simple and for some n�An�en�e satisfy

| p$(zj)|�
1

An
(cap L)n ( j=1, ..., n),

there is a simple way to show that

=*(_)�=* \1
n+�c1

log An

n \1
n

�_<1+
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(see, for example, [11]). Thus, taking in Theorem 7

_=\log An

n +
1�(1+:)

,

we get for any subarc J of L

|(+L&&p)(J)|�c2 \log An

n +
:�(1+:)

. (12.1)

An example showing for L=[&1, 1] the sharpness of (12.1) is constructed
in [8].
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